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1. Introduction

Constructive field theory build functions whose Taylor expansion is perturbative field the-

ory [1, 2]. Any formal power series being asymptotic to infinitely many smooth functions,

perturbative field theory alone does not provide any well defined mathematical recipe to

compute to arbitrary accuracy any physical quantity, so in a deep sense it is no theory at

all.

In field theory infinite volume quantities are expressed by connected functions. One

main advantage of perturbative field theory is that connected functions are simply the sum

of the connected Feynman graphs. But the expansion diverges because there are too many

such graphs.

In fact connectedness does not require the full knowledge of a Feynman graph (with

all its loop structure) but only the (classical) notion of a spanning tree in it. To summarize

constructive theory, let’s say that it is all about working as much as possible with the trees

only, and resumming or hiding most of the quantum loops. This is the constructive golden

rule:

“Thou shall not know all the loops, or thou shall diverge!”

However the constructive program launched by A. Wightman and pursued by J.

Glimm, A. Jaffe and followers in the 70’s was a partial failure because no natural four

dimensional field theory could be identified and fully built. This is because only non-

Abelian gauge theories are asymptotically free in the ultraviolet limit. But ultraviolet

asymptotic freedom also means infrared slavery, and non-perturbative long range effects

such as quark confinement are not fully understood until now, even at a non-rigorous level.
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The constructive program went on, but mostly as a set of rigorous techniques applied to

many different areas of mathematical physics [3, 4].

Recently quantum field theory on non-commutative space has been shown renormal-

izable. The simplest such theory is the φ4
4 theory on the Moyal space, hereafter called φ⋆4

4 .

Grosse and Wulkenhaar [5] overcame the main obstacle to renormalizability, namely the

ultraviolet/infrared mixing, through the use of a new symmetry called Langmann-Szabo

duality [6]. Following their initial breakthrough, a flurry of papers has appeared to extend

this result to other models and to generalize to the Moyal context many useful tools and

techniques of ordinary perturbative field theory. For recent reviews, see [7, 8].

It now appears that four dimensional non commutative field theories are better behaved

than their commutative counterparts. In particular φ⋆4
4 , in contrast to its commutative

counterpart, is asymptotically safe [9 – 11]: the flow between the bare and the renormalized

coupling constant is bounded. In fact the graphs responsible for the flow of the coupling

constant compensate exactly at any order with those responsible for the wave function

renormalization. This is an exciting discovery: LS symmetry may play a role similar to

supersymmetry in taming ultraviolet flows.

Asymptotic safeness is in a sense much simpler than asymptotic freedom, and φ⋆4
4 now

stands out as an obvious candidate for a four dimensional constructive field theory without

unnatural cutoffs (although on the unexpected Moyal space).

But after [11] one main difficulty remained unsolved on the road to constructive φ⋆4
4 .

Current cluster expansions used in standard bosonic constructive theory [2] are unsuited to

treat matrix models with large number of components. To explain why, let us compare the

large N vector φ4 model and the large N matrix [12] φ4 model. In both cases the coupling

scales as 1/N for a non trivial limit as N gets large: at order n in a graph there are indeed

in both cases at most about n loops of indices. But in the first case the field has N vector

components, and at a given vertex only two different colors can meet. Knowing only a

spanning tree in the graph, it is still possible to sum over all indices at the right cost. To

do this, at any leaf of the tree one can sum over the index which does not go towards the

root and keep the other one for the next step. Iterating from leaves of the tree towards the

root there is only one index summed per vertex, (except at the root, where in the case of a

vacuum graph there are two indices to sum, leading to the final global N factor of vacuum

graphs). This procedure does not violate the constructive golden rule, as no loops need to

be known.

But a matrix model is very different. The field has N2 components and at a given

vertex four different indices meet. The scaling of the vertex is still only 1/N , but this is

because each propagator identifies two matrix field indices with two others, rather than

one. Therefore matrix models apparently clash with the constructive golden rule. The

knowledge of the full loop structure of the graph, not only of a tree, seemed until now

necessary to recover the correct power counting, for instance a single global N2 factor for

vacuum graphs.

Since φ⋆4
4 is a quasi-matrix model with a large number of components in the ultraviolet

limit [13] it is plagued with this constructive matrix difficulty, hence seems unsuited at first

sight for a constructive analysis. The difficulty persists in the direct space version [14] of
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the model, but in a different guise. In that representation, it is the non-locality of the

vertex in x space which is impossible to treat with standard constructive methods, such as

ordinary cluster and Mayer expansions with respect to lattices of cubes.

In short a new kind of expansion based on a new idea is required for constructive φ⋆4
4 .

This is what we provide in this paper.

The idea is in fact quite simple. Matrix models can be decomposed with respect to

an intermediate matrix field. Integrating over the initial field leads in a standard way to a

perfect gas of so called loop vertices for this intermediate field. One can then perform the

tree expansion directly on these loop vertices. All indices loops then appear as the correct

number of traces of products of interpolated resolvents, which can be bounded because of

the anti-Hermitian character of the intermediate field insertions.

We take as an example the construction of the connected functions of a matrix model

perturbed by a λ
N

Trφ⋆φφ⋆φ interaction. We prove as a typical result Borel summability in

λ of the normalization and of the connected 2p point functions uniformly in the size of the

matrix.1

In a companion paper [15] we explore the consequences of this idea in the more tradi-

tional context of commutative constructive field theory.

Recall that it is possible to rearrange Fermionic perturbation theory in a convergent

expansion order by order by grouping together pieces of Feynman graphs which share a

common tree [16, 17]. But bosonic constructive theory cannot be simply rearranged in such

a convergent way order by order, because all graphs at a given order have the same sign.

Resummation of the perturbation theory (which occurs only e.g. in the Borel sense) must

take place between infinite families of graphs (or subparts of graphs) of different orders. To

explicitly identify these families seemed until now almost impossible. Cluster and Mayer

expansions perform this task but in a very complicated and indirect way, through an

intermediate discretization of space into a lattice of cubes which seems ad hoc for what is

after all a rotation invariant problem.

In fact the cluster expansion between loop vertices, although found in the context of

matrix models, can identify such families also in the ordinary commutative case [15]. This

simplifies traditional bosonic constructive theory, avoiding any need for cluster and Mayer

expansions. We should bring in this way Bosonic constructions almost to the same level of

simplicity than the Fermionic ones and explore the consequences in future publications.

2. Matrix model with quartic interaction

The simplest φ4 matrix model is a Gaussian independent identically distributed measure

on N by N real or complex matrices perturbed by a positive λ
N

Trφ⋆φφ⋆φ interaction. The

N → ∞ limit is given by planar graphs. It can be studied through various methods such

as orthogonal polynomials [18, 19], supersymmetric saddle point analysis [20 – 22] and so

on. However none of these methods seems exactly suited to constructive results such as

Theorem 3 below.

1Non-uniform Borel summability, taking λ smaller and smaller as N → ∞ is trivial and would completely

miss the difficulty.
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Consider the complex case (the real case being similar). The normalized interacting

measure is

dν(Φ) =
1

Z(λ,N)
e−

λ

N
TrΦ⋆ΦΦ⋆Φdµ(Φ) (2.1)

where

dµ = π−N2

e−
1

2
TrΦ⋆Φ

∏

i,j

dℜΦijdℑΦij (2.2)

is the normalized Gaussian measure with covariance

< ΦijΦkl >=< Φ̄ijΦ̄kl >= 0, < Φ̄ijΦkl >= δikδjl. (2.3)

For the moment assume the coupling λ to be real positive and small. We decompose

the Φ functional integral according to an intermediate Hermitian field σ acting either on

the right or on the left index. For instance the normalization Z(λ,N) can be written as:

Z(λ,N) =

∫

dµGUE(σR)e
−Tr log(1⊗1+i

q

λ

N
1⊗σR)

(2.4)

where dµGUE is the standard Gaussian measure on an Hermitian field σR, that is the

measure with covariance < σR
ijσ

R
kl >= δilδjk. The e−Tr log represents the Gaussian in-

tegration over Φ, hence a big N2 by N2 determinant. It is convenient to view R
N2

as

R
N ⊗ R

N . For instance the operator H =
√

λ
N

[1⊗ σR] transforms the vector em ⊗ en into
√

λ
N

em ⊗ ∑

k σR
knek. Remark that this is an Hermitian operator because σR is Hermitian.

By duality of the matrix vertex, there is an exactly similar formula but with a left

Hermitian field σL acting on the left index, and with [σL ⊗1] replacing [1⊗σR]. From now

on we work only with the right field and drop the R superscript for simplicity.

We want to compute e.g. the normalization Z(λ,N), which is the (Borel) sum of all

connected vacuum graphs. We define the loop vertex V by

V = −Tr log(1 ⊗ 1 + 1 ⊗ iH), (2.5)

and expand the exponential as
∑

n
V n

n! . To compute the connected graphs we give a (fic-

titious) index v = 1, . . . , n to all the σ fields of a given loop vertex Vv. At any order n

the functional integral over dν(σ) is obviously also equal to the same integral but with

a Gaussian measure dν({σv}) with degenerate covariance < σv
ijσ

v′

kl >= δilδjk. We apply

then the forest formula of [23] to test connexity between the loop vertices from 1 to n.

The logarithm of the partition function or pressure is then given by the corresponding tree

formula exactly like in the Fermionic case [17].

Theorem 1.

log Z(λ,N) =
∞
∑

n=1

∑

T

{

∏

ℓ∈T

[
∫ 1

0
dwℓ

∑

iℓ,jℓ,kℓ,lℓ

]}
∫

dνT ({σv}, {w}) × (2.6)

×
{

∏

ℓ∈T

[

δiℓlℓδjℓkℓ

δ

δσ
v(ℓ)
iℓ,jℓ

δ

δσ
v′(ℓ)
kℓ,lℓ

]}

∏

v

Vv

where
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Figure 1: A tree on four loop vertices.

• each line ℓ of the tree joins two different loop vertices V v(ℓ) and V v′(ℓ),

• the sum is over trees over n vertices, which have therefore n − 1 lines,

• the normalized Gaussian measure dνT ({σv}, {w}) over the vector field σv has covari-

ance

< σv
ijσ

v′

kl >= δilδjkw
T (v, v′, {w})

where wT (v, v′, {w}) is 1 if v = v′, and the infimum of the wℓ for ℓ running over

the unique path from v to v′ in T if v 6= v′. This measure is well-defined because the

matrix wT is positive.

This is indeed the outcome of the tree formula of [23] in this case. This formula is

convergent for λ small enough!

Theorem 2. The series (2.6) is absolutely convergent for λ small enough.

Proof. Consider a vertex Vv of coordination kv in the tree. Because the σ field acts only on

right indices, and left indices are conserved, there is a single global N factor for Vv coming

from the trace over the left index. We can then from now on essentially forget about the

left indices except that they give a particular cyclic order on Vv. See figure 1 for a tree on

four loop vertices, hence with three lines.

We compute now the outcome of the kv derivatives
∏kv

i=1
δ

δσi acting on V = −Tr log(1+

iH) which created this vertex. Fix an arbitrary root line ℓ0 in the tree T . There is a unique

position i = 1 on the loop vertex from which a path in T goes to ℓo, and the loop vertex

factor Vv after action of the derivatives is

[ kv
∏

i=1

δ

δσi

]

Vv = N(−i
√

λ/N)kv

kv
∏

i=1

C(i, i + 1;σv) (2.7)

where the cyclic convention is kv + 1 = 1, and the operator C(i, i + 1;σv) = (1 +

iH(σv))−1(ji, ji+1) acts only on the right index (it is no longer a tensor product, since

the left trace has been taken into account in the global N factor in front of Vv).

To bound the integrals over all sums
∑

iℓ,jℓ,kℓ,lℓ
(which by the way are only about right

indices) we need now only a very simple lemma:

– 5 –
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Vertex

Resolvent

Figure 2: Turning around a tree with four vertices and three lines.

Lemma 1. For any {w} and {σv} we have the uniform bound

|
∏

ℓ∈T

∑

iℓ,jℓ,kℓ,lℓ

[

δiℓlℓδjℓkℓ

δ

δσ
v(ℓ)
iℓ,jℓ

δ

δσ
v′(ℓ)
kℓ,lℓ

]}

∏

v

Vv| ≤ N2 (2.8)

Proof. Since iH is anti-hermitian we have indeed ‖(1 + iH)−1‖ ≤ 1. The product over all

vertices of the resolvents C(i, i + 1;σv) together with all the sums
∑

iℓ,jℓ,kℓ,lℓ
exactly forms

a big trace of 2(n− 1) operators which turns around the tree (see figure 2). This is the key

point. This trace of an operator of norm smaller than 1 is bounded by N .

It remains now to collect the other factors. There is an N factor for each vertex of the

tree and a | − i
√

λ/N | factor for each half line of the tree. Collecting all the N factors we

get therefore a a N2 global, n independent factor as should be the case for vacuum graphs

in this matrix Φ4 theory, times λn−1.

We can now integrate the previous bound over the complicated measure dνT and over

the {wℓ} parameters. But since our bound is independent of σv and w’s, since the measure

dν(σ) is normalized, and each wℓ integral runs from 0 to 1, the bound goes through.

Finally by Cayley’s theorem the sum over trees costs n!
∏

v
1

(kv−1)! The n! cancels with

the 1/n! and we remain with a geometric series bounded by N2
∑

n≥1 λn−1 hence convergent

for λ < 1.

This completes the proof of Theorem 2.

3. Uniform Borel summability

Rotating to complex λ and Taylor expanding out a fixed number of vertices proves Borel

summability in λ uniformly in N .

Definition. A family fN of functions is called Borel summable in λ uniformly in N if

• Each fN is analytic in an N independent disk DR = {λ|Re λ−1 > 1/R};

• Each fN admits an asymptotic power series
∑

k aN,kλ
k (its Taylor series at the origin)

hence:

fN (λ) =
r−1
∑

k=0

aN,kλ
k + RN,r(λ) (3.1)

– 6 –
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such that the bound

|RN,r(λ)| ≤ ANσrr!|λ|r (3.2)

holds uniformly in r and λ ∈ DR, for some constant σ ≥ 0 independent of N and

constants AN ≥ 0 which may depend on N .

Then every fN is Borel summable [24], i.e. the power series
∑

k aN,k
tk

k! converges for

|t| < 1
σ
. It defines a function BN (t) which has an analytic continuation in the N indepen-

dent strip Sσ = {t| dist (t, R+) < 1
σ
}. Each such function satisfies the bound

|BN (t)| ≤ BNe
t

R for t ∈ R
+ (3.3)

for some constants BN ≥ 0 which may depend on N . Finally each fN is represented by

the following absolutely convergent integral:

fN(λ) =
1

λ

∫ ∞

0
e−

t

λ BN (t)dt for λ ∈ CR. (3.4)

Theorem 3. The series for Z(λ,N) is uniformly Borel summable with respect to the slice

index N .

Proof. It is easy to obtain uniform analyticity for ℜλ > 0 and |λ| small enough, a region

which obviously contains a disk DR. Indeed all one has to do is to reproduce the previous

argument but adding that for H Hermitian, the operator (1 + ieiθH)−1 is bounded by 2

for |θ| ≤ π/4. Indeed if π/4 ≤ Argz ≤ 3π/4, we have |(1 + iz)−1| ≤
√

2.

Then the uniform bounds (3.2) follow from expanding the product of resolvents in (2.7)

up to order r−2(n−1) in λ. by an explicit Taylor formula with integral remainder followed

by explicit Wick contractions. The sum over the contractions leads to the σrr! factor

in (3.2); in our case the constants AN = K.N2 actually depend on N but this is allowed

by our definition of uniform Borel summability.

4. Correlation functions

To obtain the connected functions with external legs we need to add resolvents to the initial

loop vertices. A resolvent is an operator C(σr,m1,m2), which can depend on only two in-

dices because in a matrix model every entering index must go out. The connected functions

Sc(m1, . . . ,m2p) therefore depend only on 2m, not 4m indices. They are obtained from

the normalized functions by the standard procedure. We have the analog of formula 2.6

for these connected functions:

Theorem 4.

Sc(m1, . . . ,m2p) =
∑

π

∞
∑

n=1

∑

T

{

∏

ℓ∈T

[

∫ 1

0
dwℓ

∑

iℓ,jℓ,kℓ,lℓ

]

}
∫

dνT ({σv}, {w}) × (4.1)

×
{

∏

ℓ∈T

[

δiℓlℓδjℓkℓ

δ

δσ
v(ℓ)
iℓ,jℓ

δ

δσ
v′(ℓ)
kℓ,lℓ

]

}{

∏

v

Vv

p
∏

r=1

Cj(σr, zπ(r,1), zπ(r,2))

}

where

– 7 –
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• the sum over π runs over the pairings of the 2p external variables into pairs

(zπ(r,1), zπ(r,2)), r = 1, . . . , p,

• each line ℓ of the tree joins two different loop vertices or resolvents Vv(ℓ) and Vv′(ℓ),

• the sum is over trees joining the n+p loop vertices and resolvents, which have therefore

n + p − 1 lines,

• the measure dνT ({σv}, {σr}, {w}) over the vector fields {σα} has covariance

< σα
ijσ

α′

kl >= δilδjkw
T (α,α′, {w})

where again for α,α′ ∈ {v}, {r}, wT (α,α′, {w}) is 1 if α = α′, and the infimum of

the wℓ for ℓ running over the unique path from α to α′ in T if α 6= α′.

This expansion is convergent exactly as the initial one and we get:

Theorem 5. The series (4.1) is absolutely convergent for λ small enough, and we have:

|Sc(m1, . . . ,m2p)| ≤ K (2p)!!N2−p. (4.2)

5. Further topics

5.1 Symmetric or Hermitian matrix models

Interacting GOE and GUE models can be treated along the same lines. Let us consider for

instance the same model than (2.1) but with Φ = Φ⋆ now an Hermitian matrix. We have

no longer a canonical distinction between left and right indices so that the intermediate

field operator acts on both sides, but it is still anti-Hermitian. The vertex operator (2.5)

is therefore replaced by

V = −Tr log(1 ⊗ 1 +
i

2

√

λ

N
[σ ⊗ 1 + 1 ⊗ σ]), (5.1)

so that each loop vertex is no longer simply proportional to N because of e.g. the left

trace. But any tree is planar so one can still draw the tree between loop vertices on a

plane, as in figure 3. The total number of traces of products of (1 + iH)−1 operators

for a tree on n vertices still remains n + 1 by Euler formula. Indeed Euler formula says

2 − 2g = V − L + F , where g is the genus and F is the number of faces, each costing N .

But graphs of genus 0 as those of figure 3 contain 2(n − 1) vertices (of the cubic type),

and two kinds of lines, the n− 1 lines of the tree and the
∑

v kv = 2(n− 1) resolvent lines.

Therefore F = 2−2(n−1)+(n−1+2(n−1)) = n+1 so that all the results of the previous

sections remain valid.

– 8 –
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Figure 3: A tree with five loop vertices joined by four tree lines, eight cubic vertices, and eight

resolvent lines which is a contribution in the Hermitian case.

5.2 Genus expansion

The genus expansion which lies at the root of matrix models can be generalized construc-

tively. We can indeed expand the resolvents on the external loop which turns around the

tree in figures 1 or 3, and Wick-contract one at a time the σ fields produced. If we were to

perform this to all orders the expansion would diverge. However we can also contract until

a fixed number of non-planar crossings are generated, and then stop. We call this expansion

a “rosette expansion”. It does not diverge and allows to extract the 1/N expansion up to

a fixed genus g, plus a smaller remainder. For instance for the normalization one obtains

a representation

Z(λ,N) = N2

[ g
∑

k=0

N−2kak,λ + Rg+1(λ,N)

]

(5.2)

where ak(λ), the sum over all vacuum graphs of genus k, is an analytic function of λ and

Rg+1(λ,N) is a convergent series whose sum is bounded by O(N−2(g+1)) and is again Borel

summable in λ uniformly in N .

This remark is essential to construct φ⋆4
4 through this method. We need indeed to

identify the planar contributions with a single broken face and two or four external legs

because they are the only ones which need to be renormalized, and also the only ones which

can be renormalized (because only planar graphs with a single broken face look like Moyal

products when seen from lower renormalization group scales [8]). It is therefore essential

to have a method which can extract them from the rest of the expansion without violating

the constructive golden rule. This can be done through the rosette expansion sketched

above.

5.3 Decay of correlations in quasi-matrix models

To fully construct φ⋆4
4 we have to take into account the fact that the propagator of φ⋆4

4 in

the matrix base does not exactly conserve matrix indices [13], except at Ω = 1, where Ω is

the Grosse-Wulkenhaar parameter.

It is therefore essential to show not only uniform convergence but also decay of con-

nected functions with respect to external matrix indices in this kind of models. This

should not be too difficult using iterated resolvents bounds, as is shown in [15] in the case

of ordinary φ4 on commutative space.

– 9 –
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5.4 Multiscale Analysis

To fully construct φ⋆4
4 we have also to generalize the single N analysis of this paper to

a multiscale analysis such as the one of [25]. This requires to optimize as usually the

tree expansion over all the scales so that connected functions of higher scales are always

correctly connected through the tree.

In fact the φ⋆4
4 can presumably also be built as easily in x space representation by a

slight modification of the matrix argument. Indeed a Moyal φ4 vertex can be decomposed

in terms of an intermediate ultralocal real field with a Trφ̄ ⋆ φ ⋆ σ interaction. This can

again be done in two ways by duality. The new vertex is anti-hermitian again as a kernel

between the φ̄ and φ points. The bosonic covariance of the φ field is a Mehler kernel

that can be easily broken in square roots. We obtain loops of Mehler kernels sandwiched

between operators of the (1 + iH)−1 type. We expect therefore all constructive aspects to

be also doable in x-space [26].

Since our loop vertex expansion seems very well suited to treat both large N vector

and large N matrix limits, we expect that it is the right tool to glue different regimes of

the renormalization group governed respectively e.g. in the ultraviolet regime by a small

coupling expansion and in the infrared by a “non-perturbative” large N expansion of

vector or matrix type. This gluing problem occurs for the vector case in many different

physical contexts, from mass generation of the two-dimensional Gross-Neveu [27] or non-

linear σ-model [28] to the BCS theory of supraconductivity [29]. Confinement itself could

be a matrix version of the same gluing problem [12]. All such gluing problems have been

considered until now too complicated in practice for a rigorous (i.e. constructive) analysis.

We hope that this might change over the coming years.
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